PRESUPUESTO DE CARBONO NACIONAL Y DEL SECTOR ELÉCTRICO: PROPUESTA METODOLÓGICA México

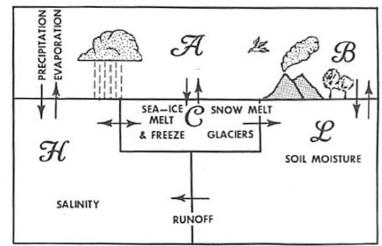
Luisa Sierra Fernando Ramones 16 de mayo de 2019

ÍNDICE

- Introducción
- Sistema Climático:
 - Sensibilidad Climática
 - Modelos Climáticos
 - Trayectorias de Concentración Representativas
- Motivación
- Propuesta Metodológica
- Presupuesto de Carbono Nacional
- Presupuesto de Carbono del Sector Eléctrico
- Presupuesto de Carbono Nacional y del Sector Eléctrico 2018-2030
- Siguientes Pasos

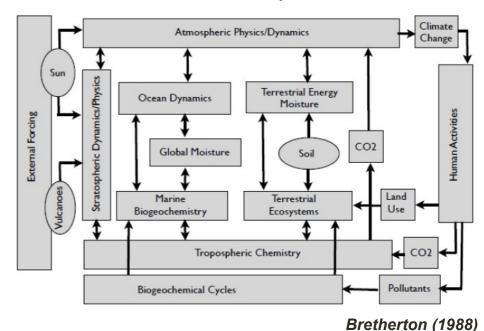
INTRODUCCIÓN

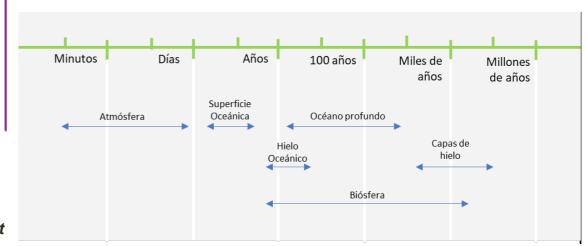
- → El Acuerdo de París establece que el aumento de la temperatura media global debe mantenerse por debajo de 2°C con respecto a los niveles preindustriales, y proseguir los esfuerzos para limitar dicho aumento a 1.5°C.
- → Las metas nacionales establecidas en la NDC no estan alineadas a la trayectoria de 2°C. Al contrario, están vinculadas a un escenario tendencial.
- → Los instrumentos de planeación del sector eléctrico (PRODESEN y Estrategia) tampoco se encuentran alineados al cumplimiento de la trayectoria de 2°C
- → Si queremos cumplir el Acuerdo de París, debemos incrementar la ambición en materia de mitigación.


EL SISTEMA CLIMÁTICA

- Atmósfera (A)
- Hidrósfera (H)
- Océanos, lagos y ríos (O)
- Criósfera (formada por nieve y masa de hielo continental) (C)
- Litósfera (L)
- Biósfera terrestre y marina
 (B)

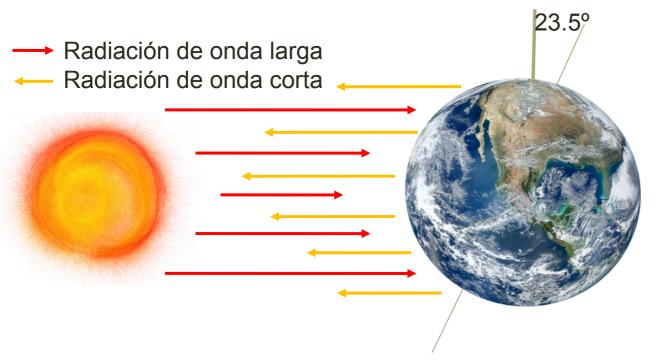
SISTEMA CLIMÁTICO:


THE TOTAL CLIMATE SYSTEM AND ITS SUBSYSTEMS



Peixoto & Oort

The Climate System



Las escalas de tiempo son muy diferentes entre los subsistemas e incluso para un subsistema mismo.

EL SISTEMA CLIMÁTICO

El sistema climático está sujeto a dos forzantes externos que condicionan su comportamiento global: la radiación solar y la acción de la gravedad.

Forzamiento radiativo: Diferencia entre la insolación absorbida por la tierra y la energía irradiada al espacio. Se expresa en W m⁻²

Balance radiativo de la Tierra: Energía entrante = energía saliente

Energy Gain of the Earth = Cross-Section × S× Absorption

$$= (\pi r^2) \times (S) \times (1 - \alpha)$$

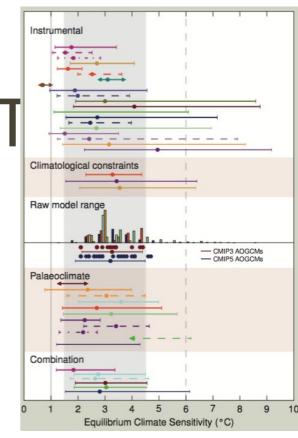
 α = albedo - es el porcentaje de radiación que cualquier superficie refleja respecto a la radiación que incide sobre ella.

Constante Solar (S) ≈ 1360 W / m²

Es la cantidad de energía recibida en forma de radiación solar por unidad de tiempo y unidad de superficie.

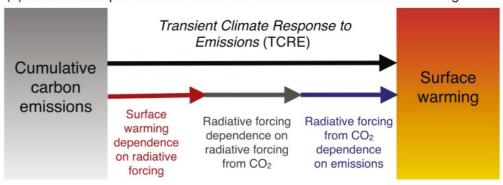
SENSIBILIDAD CLIMÁT

La sensibilidad climática mide la respuesta que tiene el sistema climático ante un forzamiento radiativo constante. Es decir, cuanto subiría la temperatura media global en respuesta a una duplicación de la concentración atmosférica de CO₂ en comparación con los niveles preindustriales.

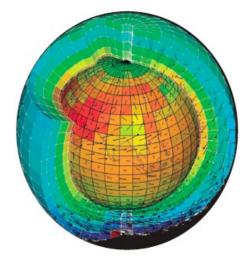

La sensibilidad climática se ha estimado entre 1.5°C y 4.5°C

Niveles preindustriales (CO₂): 280ppm

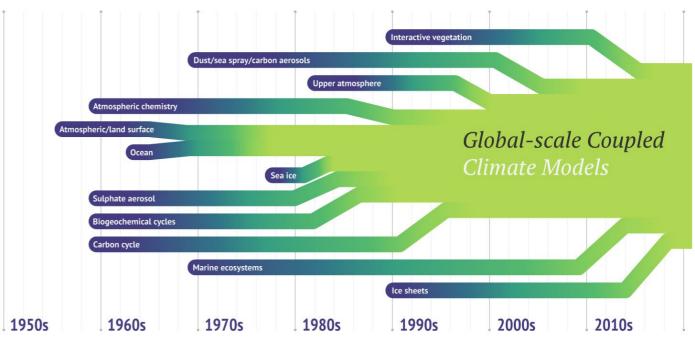
Abril 2019: 413.32ppm (promedio mensual-Mauna Loa CO₂)


11 Mayo 2019: 415.26ppm (Lectura registrada en Mauna Loa)

Sin acciones de mitigación, es probable que alcancemos 560ppm en 2060.


Fuente: AR5 IPCC

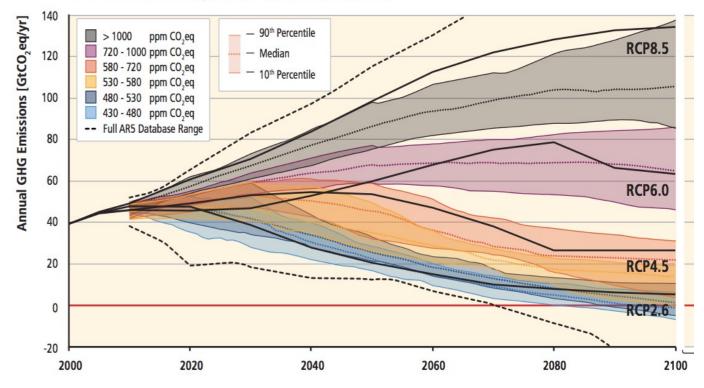
(b) Schematic representation of the link between emissions and warming


Fuente: Richard G Williams et al 2016 Environ. Res. Lett. 11 015003

MODELOS CLIMÁTICOS

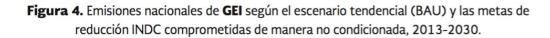
Desde hace más de 6 décadas, los científicos han utilizado modelos matemáticos para representar el sistema climático. Con el tiempo, estos se han ido perfeccionando e incrementando su complejidad.

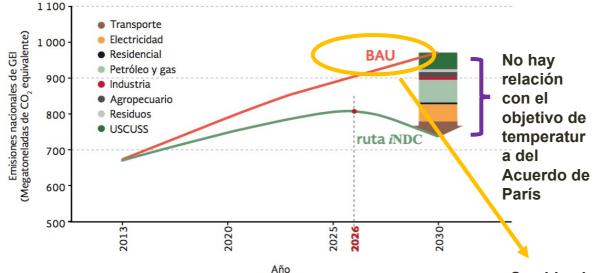
- -Modelos de Balance de Energía
- -Modelos Convectivos Radiativos
- -Modelos de Circulación General
- -Modelos Climáticos Acoplados
- -Modelos del Sistema de la Tierra
- -Modelos Climáticos Regionales
- -Modelos de Evaluación Integrados



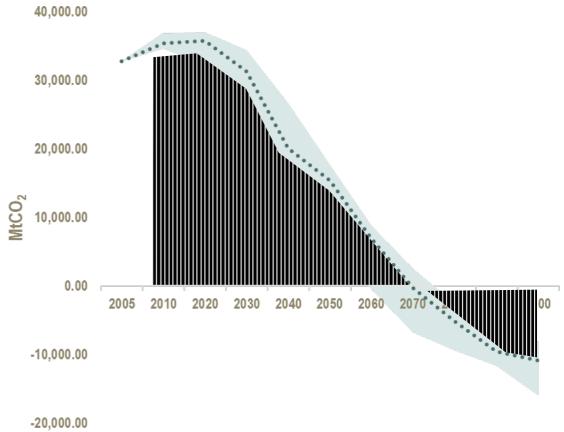
TRAYECTORIAS DE CONCENTRACIÓN REPRESENTATIVAS (RCP)

Los RCP representan el forzamiento radiativo total calculado para el año 2100 respecto al año 1750 (por ejemplo el RCP2.6 significa 2.6 W/m²).


Los RCP se basan en una combinación de modelos de evaluación integrados, modelos climáticos simples, modelos de química de la atmósfera y modelos del ciclo del carbono.



DIFERENCIA ENTRE METODOLOGÍA DE LÍNEA BASE Y PRESUPUESTO DE CARBONO


VS

Fuente: INECC. "Compromisos de Mitigación y Adaptación ante el Cambio Climático para el periodo 2020-2030"

Cambian los supuestos -> Cambian las metas

Trayectoria de emisiones para mantener la TMG por debajo de 2°C

RESUMEN DE LA METODOLOGÍA

Se obtuvo la base de datos con las proyecciones de las emisiones de CO₂ y CO₂e de los Modelos de Evaluación Integrados (IAM's, por sus siglas en inglés) para la trayectoria 4 CP2.6 del Grupo de

El resultado obtenido en el ejercicio No.3 permitió comparar nuestros números con las estimaciones del GTIII del IPCC y otros autores, y observar que no existía una variación significativa, lo cual validó nuestro procedimiento.

A partir de la base de datos, se calculó la mediana para cada año del 2005 al 2100 y con los resultados se estimó la regresión de la trayectoria de emisiones que logra mantener la temperatura media global 5 TMG) por debajo de los 2°C.

Al validar la metodología, se llevó cabo el mismo procedimiento del paso No.2, ahora con los valores de CO₂e. Se escalaron los resultados a un valor de 1.39%, lo cual representa la contribución histórica de emisiones de México

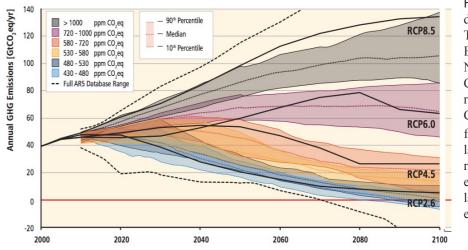
Con la regresión estimada, se procedió a calcular su área bajo la curva del 2011 al 2100 obteniendo el presupuesto de carbono en CO₂.

Con la regresión estimada, se repitió el paso No.3 para calcular las emisiones del país del 2011 al 2100 y se obtuvo el presupuesto de carbono nacional en CO₂e.

6

MODELOS Y ESCENARIOS P1

BASE DE DATOS


Se obtuvo la base de datos que nos aportara la trayectoria del escenario RCP^(*)2.6, dicha información fue posible conseguirla a través del documento *Technical Annex* – *Synthesis report on the aggregate effect of the intended nationally determined contributions* de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCC, por sus siglas en inglés).

MODELOS

Se utilizó las proyecciones de las emisiones de dióxido de carbono de los escenarios P1 que utilizan los modelos GCAM 3.0, GCAM3.1, IMAGE 2.4, MERGE-ETL_2011 y el REMIND 1.5 para los años 2005 al 2100.

Por escenarios P1 se refiere aquellos con una probabilidad mayor a 66% en mantenerse por debajo de 2°C implementando acciones inmediatas de mitigación de cambio climático a partir del 2010.

GHG Emission Pathways 2000-2100: All AR5 Scenarios

Fuente: Resumen para Hacedores de Política Pública del Grupo de Trabajo III del 5° Reporte de Evaluación del IPCC.

Nota: (*) Representative

Concentration Pathways (RCP) se refiere a las concentraciones de CO₂eq de todos los agentes forzantes (en partes por millón) en la atmósfera. El forzamiento radiativo se refiere a la diferencia entre las insolación absorbida por la tierra y la energía irradiada al espacio.

2°C mitigation scenarios used in the synthesis report from the IPCC AR5 database.

P1 scenarios with >66% chance of staying below 2°C warming

GCAM 3.0 | EMF27-450-FullTech

GCAM 3.1 | LIMITS-500

IMAGE 2.4 | AME 2.6 W/m2 OS

IMAGE 2.4 | AMPERE2-450-FullTech-OPT

IMAGE 2.4 | AMPERE3-CF450

IMAGE 2.4 | EMF27-450-FullTech

IMAGE 2.4 | LIMITS-450

MERGE-ETL_2011 | AMPERE2-450-FullTech-OPT

MERGE-ETL_2011 | AMPERE2-450-LimSW-OPT

MERGE-ETL 2011 | AMPERE2-450-LowEI-OPT

MERGE-ETL 2011 | AMPERE2-450-NucOff-OPT

 $MERGE\text{-}ETL_2011 \mid AMPERE3\text{-}CF450$

REMIND 1.5 | EMF27-450-FullTech

REMIND 1.5 | LIMITS-450

ESTIMACIÓN DE TRAYECTORIA Y PRESUPUESTO DE CARBONO CO₂ 40,000.00

Año	M ediana (M tCO ₂)	Percentil 10 (MtCO ₂)	Percentil 90 (MtCO ₂)	
2005	32826.09	31575.97	34421.17	
2010	35401.68	34683.63	36939.97	
2015	35823.09	35587.59	36154.56	
2020	35743.74	23964.59	37037.15	
2025	34342.64	25433.94	34372.51	
2030	31333.30	24973.04	34357.24	
2035	26890.75	23712.87	27478.06	
2040	20046.02	18240.83	26664.52	
2045	17893.72	15161.51	20136.93	
2050	15374.09	9665.13	17669.06	
2055	ND	ND	ND	
2060	6939.03	-466.15	8722.77	
2065	ND	ND	ND	
2070	-326.50	-6791.47	2512.10	
2075	ND	ND	ND	
2080	-5137.22	-9375.99	-2680.85	
2085	ND	ND	ND	
2090	-9597.65	-11628.70	-6929.06	
2095	ND	ND	ND	
2100	-10886.73	-15945.05	-8055.79	

 $R^2 = 0.9937$ 30,000.00 $B_{Global} = \int_{2011}^{2100} (1.64 * 10^{-4} t^3 - 1.01t^2 + 2073.23t - 1417935.54) dt$ 20,000.00 Presupuesto de 10.000.00 carbono (2011-2100) = **1,017** 0.00 2005 2010 2050 -10,000.00 Valores dentro de los percentiles -20,000.00 que logran mantener la Área bajo la temperatura curva = Trayectoria de promedio por Presupuesto emisiones (mediana) debajo de los de carbono

2°C

 $T_{Global} = 1.64*10^{-4}t^3 - 1.01t^2 + 2073.23t - 1417935.54$

Fuente: AR5 Scenario Database

TABLA DE VALIDACIÓN

Autor (es)	Años	Presupuesto de carbono (GtCO ₂)
Iniciativa Climática de México	2011-2100	1,017 GtCO ₂
AR5-IPCC Grupo de Trabajo III	2011-2100	990 GtCO ₂
Rogelj et al. (2015)	2011-2100	790 GtCO ₂
Knutti y Rogelj (2015)	2013 – 2100	969 GtCO ₂
Millar y Friedlingstein (2018)	2016 – 2100	823 GtCO ₂
Gignac y Matthews (2015)	2014-2100	930 GtCO ₂

ESTIMACIÓN DE PRESUPUESTO DE CARBONO NACIONAL

Se consideró la contribución de emisiones históricas en México de 1.39%.

Para el periodo 2011-2018, se estimaron las emisiones que sobrepasaron el presupuesto de carbono asignado (293 MtCO₂e) y se restaron los excedentes a partir de 2019 para obtener la siguiente regresión:

$$T_{\text{México}} = 1.85 \cdot 10^{-3} t^3 - 11.42t^2 + 23439.29t - 16025182.84$$

$$R^2 = 0.998964956$$

$$B_{M\acute{e}xico} = \int_{t_0=2011}^{t_T=2100} \left(1.85 * 10^{-3} t^3 - 11.42 t^2 + 23439.29 t - 16025182.84 \right) dt$$

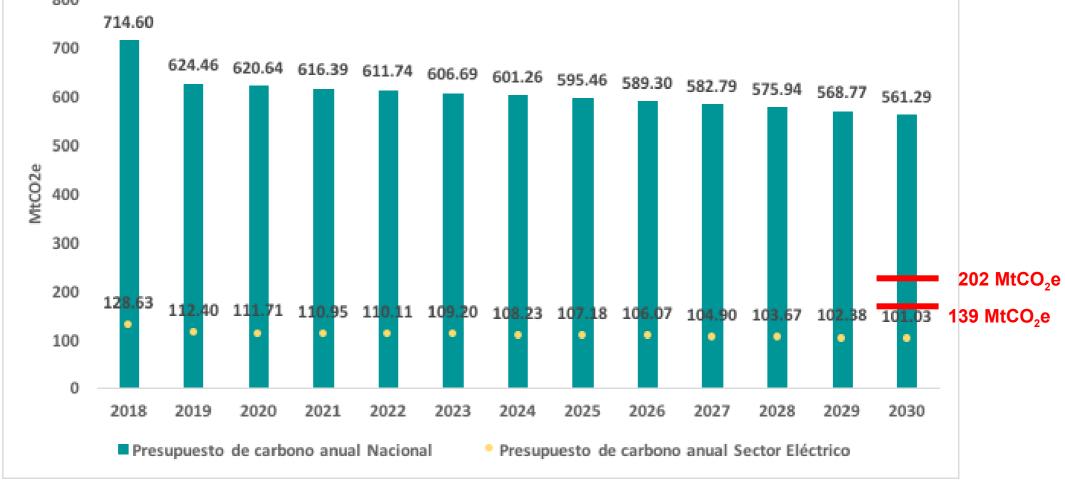
Presupuesto de Carbono (2019 -2100) = 22.2 GtCO₂e

Calculadora:	Presupuesto	de Carbono			
	Año final:	2100		Año inicial:	201
México					
0.0004636143353		1.94481E+13	9016417953.38		
3.8073684933333		9261000000	35260039616.76		
11719.649010000		4410000	51683652134.10		
16025182.840000		2100	33652883964.00		
	TO	TAL (año final)	-8212853493.28		
0.000463	36143353	1.63549E+13	7582372889.39		
3.8073684933333		8132727331	30964289804.92		
11719.649010000		4044121	47395678673.97		
16025182.840000		2011	32226642691.24		
	тот	AL (año inicial)	-8212880932.80		
Presupues	sto de carbon	o (MtCO2e)	27439.515		

ESTIMACIÓN DEL PRESUPUESTO DE CARBONO DEL SECTOR ELÉCTRICO

Considerando que el sector contribuye con el 18% de las emisiones nacionales (*Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero 1990-2015*), se estimó la proporción que dicho porcentaje representa respecto a los valores nacionales y se calculó el presupuesto de carbono sectorial para el periodo 2018 -2030, realizando los siguientes pasos:

$$T_{Electricidad} = 3.34*10^{-4}t^3 - 2.06t^2 + 4219.07t - 2884532.97$$


 $R^2 = 0.998965029$

$$B_{Electricidad} = \int_{t_0=2011}^{t_T=2100} (3.34*10^{-4}t^3 - 2.06t^2 + 4219.07t - 2884532.97)dt$$

Presupuesto de Carbono (2019 - 2100) = **3.9 GtCO**₂**e**

Calculadora:	Presupuesto	de Carbono			
	A =	0400		Age initials	201
	Año final:	2100		Año inicial:	201:
Sector Béctr	rico				
0.00008	3345058	1.94481E+13	1622955283.73		
0.68532635100		9261000000	6346807336.61		
2109.53687850		4410000	9303057634.19		
288453	2.97100	2100	6057519239.10		
	TO	TAL (año final)	-1478313657.80		
0.00008	3345058	1.63549E+13	1364827163.92		
0.68532	2635100	8132727331	5573572345.43		
2109.53	3687850	4044121	8531222390.62		
288453	2.97100	2011	5800795804.68		
	TOT	AL(año inicial)	-1478318595.58		
Presupues	sto de carbon	o (MtCO2e)	4937.778		

PRESUPUESTO DE CARBONO NACIONAL Y DEL SECTOR ELÉCTRICO 2018 - 2030

SIGUIENTES PASOS

Definir una ruta de descarbonización para el sector eléctrico que cumpla el presupuesto de carbono propuesto para el periodo 2018-2030 y prepare el cumplimiento de la trayectoria de 2°C para el resto del siglo.

Calcular curvas de abatimiento marginal para definir el costo de implementación de dicha ruta de descarbonización.

Definir un escenario alterno al propuesto al PRODESEN.

Muchas gracias