
Für Mensch & Umwelt

Workshop "Low Emission Zones" Ciudad de México 12/2014 Low Emission Zones: Experiences in Germany

Frank Hoffmann Umweltbundesamt - Federal Environment Agency Unit II 4.1 - General Aspects of Air Quality Control

structure

The UBA

- Founded 1974 40 years Federal Environment Agency
- 1500 employees at 13 sites
- The Mission: early detection of environmental risks and threats and finding solutions
- Topics: Climate, Energy, Air, Soil, Water, Consumption, Resources, Traffic, Chemicals ...
- Gathering data concerning the state of environment
- Investigating interrelationships and making projections
- Providing Federal Ministry of environment with policy advice and the citizens with information

Department Air

Engaged in

- general aspects of air quality control
- experimental investigation of air quality
- assessment of air quality
- impact on terrestrial ecosystem
- air monitoring network

Low Emission Zones (LEZ) in EU and Germany

Low emission zone: +urban areas +traffic related air quality problem +protection of human health +stronger polluting combustion-powered vehicles banned

Different LEZ-strictness in EU: Often only heavy-duty vehicles (HDV), buses affected

In Germany: motorways excluded, motor bikes and emission-reduced HDV allowed, normal HDV extra measure

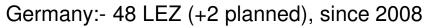
"Stronger polluting combustion-powered vehicles": primarily Diesel vehicles EU-Vehicle-Emission-Standards 2009 target 130g CO2/km (till 2015 already met Till 2020: 95g CO2/km

Euro Standards sets emission limits: CO, HC, NOx and particulates Now: real-road data vs. testing cycle data

Effects: Existing traffic amount becomes cleaner Emission reduction by faster fleet modernization and retrofitting (filter) -> explicit immission reduction: human health ↑

Health threats of air pollutants NOX/PM

Pulmonary diseases, Cardiovascular disease, heart attack, allergic reactions, premature birth



WHO data premature deaths/year because of PM pollution: 350.000 (EU), 47.000 (Germany)

> months of life lost: 8,6 (EU), 10,2 (Germany)

Low Emission Zones (LEZ) in Germany - Status

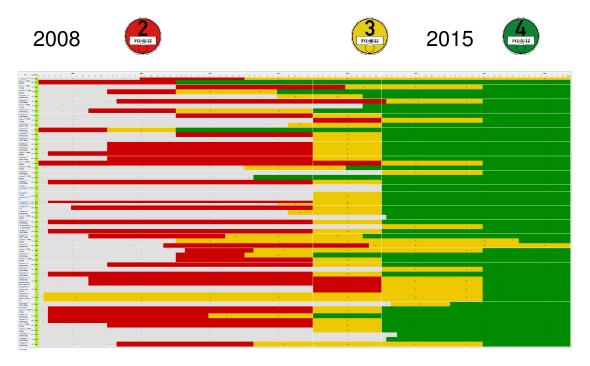
Europa: ca. 300 LEZ London plans ultra low emission zone 2020

- biggest LEZ: Ruhrgebiet 850 km² 13 cities 1 LEZ
- biggest city without LEZ Hamburg
- size: 40 LEZ 10-50km², rest 100km2++ (Munich: 15% of city area with 1/3 people)
- label valid in all German cities
- German + Czech sticker mutual acceptance

Diversity of measures in Germany_

Year 2012:

231 Action-/air quality plans in Germany Screening:


130 standard measures

An- zahi	Anteil in %	ID_ MN	Standardisierte Maßnahme	Quellgruppe		
124	5.9%	57	Emissionsarme Antriebsarten im ÖPNV und bei städtischen Fahrzeugen	Kfz-Verkehr		
106	5.0%	8	Verkehrsfluß-Optimierung Kfz-Ve			
104	5.0%	36	ÖPNV, Attraktivitätssteigerung	Kfz-Verkehr		
97	4.6%	2	Fahrradverkehr, Attraktivitätssteigerung	Kfz-Verkehr		
64	3.0%	92	Baustellenrichtlinie / Staubminderungsplan	Stationäre Quellen		
63	3.0%	53	Bau Ring-, Ausfall- oder Umgehungsstraße	Kfz-Verkehr		
58	2.8%	74	Öffentlichkeitsarbeit Luftreinhalteplan / Luftqualität	Kfz-Verkehr		
57	2.7%	30	L kw-Durchfahrtsverhot	Kfz-Verkehr		
54	2.6%	23	Umweltzone mit zeitlicher Staffelung	Kfz-Verkehr		
41	2.0%		rupgangerverkenr, Attraktivitatssteigerung	кт2-уегкепг		
41	2.0%	44	Mobilitätsberatung	Kfz-Verkehr		
39	1.9%	46	Begrünung	Kfz-Verkehr		
39	1.9%	85	Fernwärmenetze / Nahwärmenetze, Ausbau	Stationäre Quellen		
38	1.8%	37	ÖPNV, Streckennetz-Ausbau	Kfz-Verkehr		
37	1.8%	16	Lkw-Routenkonzept	Kfz-Verkehr		
37	1.8%	84	Energieeinsparung	Stationäre Quellen		
35	1.7%	33	Parkraum-Bewirtschaftung	Kfz-Verkehr		
35	1.7%	49	Stadtplanung, Immissionsschutzbelange	Kfz-Verkehr		
35	1.7%	89	Umstellung auf regenerative oder emissionsarme Energieträger	Stationäre Quellen		
34	1.6%	79	Anlagensanierung - Beste verfügbare Technik	Stationäre Quellen		
31	1.5%	18	Tempo 30	Kfz-Verkehr		
28	1.3%	35	ÖPNV, Fahrtzeitverkürzung	Kfz-Verkehr		
28	1.3%	78	Festbrennstoff-Feuerung	Stationäre Quellen		
27	1.3%	48	Klimatologische Zusammenhänge	Kfz-Verkehr		
26	1.2%	6	Tangentiale Ableitung des Durchgangsverkehrs	Kfz-Verkehr		
26	1.2%	50	Verkehrsentwicklungsplan	Kfz-Verkehr		
25	1.2%	11	Verkehrslenkung, dynamisch	Kfz-Verkehr		
24	1.1%	61	Erdgasfahrzeuge	Kfz-Verkehr		
22	1.0%	34	Parkraum-Management	Kfz-Verkehr		
21	1.0%	40	Car Sharing	Kfz-Verkehr		
21	1.0%	62	Fahrbahnbelag, Sanierung	Kfz-Verkehr		
21	1.0%	109	Festbrennstoff-Feuerung / Öffentlichkeitsarbeit	Stationäre Quellen		
21	1.0%	88	Grüngut-Verbrennung, Verbot	Sonstige Quellen		
19	0.9%	80	Emissionsgrenzwerte, EU	Stationäre Quellen		
19	0.9%	76	Mobile Maschinen und Geräte, emissionsarm	Sonstige Quellen		
18	0.9%	67	EU-Emissionsgrenzwerte	Kfz-Verkehr		
18	0.9%	75	Straßennassreinigung	Kfz-Verkehr		
18	0.9%	97	Straßenreinigung	Kfz-Verkehr		
17	0.8%	41	Fahrgemeinschaften / Pendlerportal	Kfz-Verkehr		
16	0.8%	2	Kraicverkehr statt Ampel	Kfz-Vorkohr		
16	0.8%	7	Umweltzone ohne zeitliche Staffelung	Kfz-Verkehr		

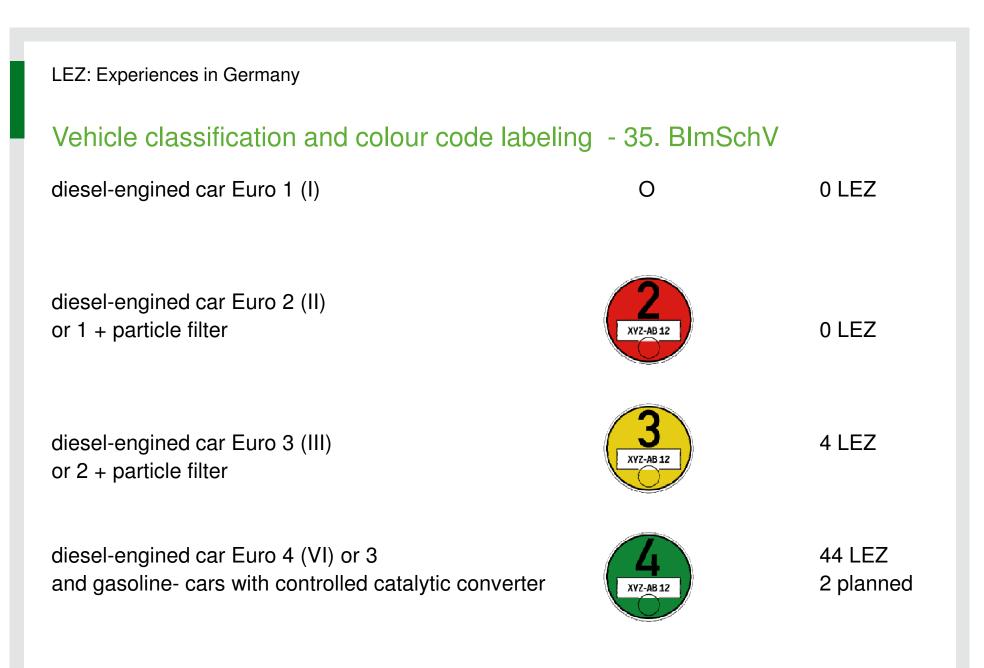
Diegmann et al. 2014 (UBA-Texte 26/2014)

LEZ classification

x-coordinate: Timeline 2008-15 y-coordinate: German cities

Low Emission Zones (LEZ) in Germany - Environmental/traffic regulatory

Measure corresponds to EU Subsidiary principle: Memberstate Responsibility + Autonomy "local problems: local solutions and measures"


EU: 2008/50/EG air quality directive - WHO recommendations influences limit values Germany:

39.BImSchV +road traffic regulations, monetary fine catalog

Municipality responsible for compliance

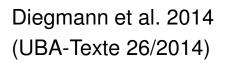
LEZ anchored in local air quality plan ...

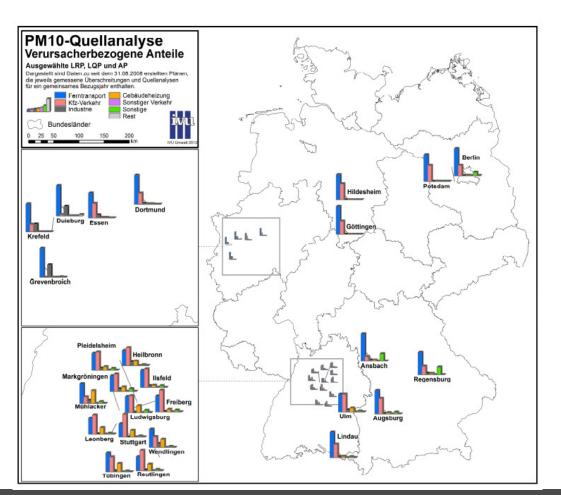
35. BlmSchV (labelling-ordinance): vehicle classification (four classes) and exceptions visual control (sticker with license plate number on front shield)

Stickers available (5 €): internet, repair shops, Dekra, TÜV, licensing offices

Exceptions for vehicles

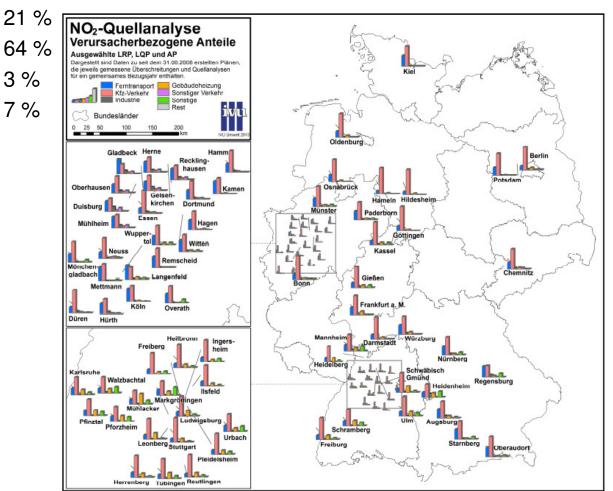
general:


Mobile machinery and equipment Work machines Agriculture and forestry traction engines Two-wheeled and tricar motor vehicles Vehicles of handicapped persons Vehicles of ambulance, army Old-timer


individual: request neccessary (hardship case)

Air pollutants: Origin-related PM10 source analysis

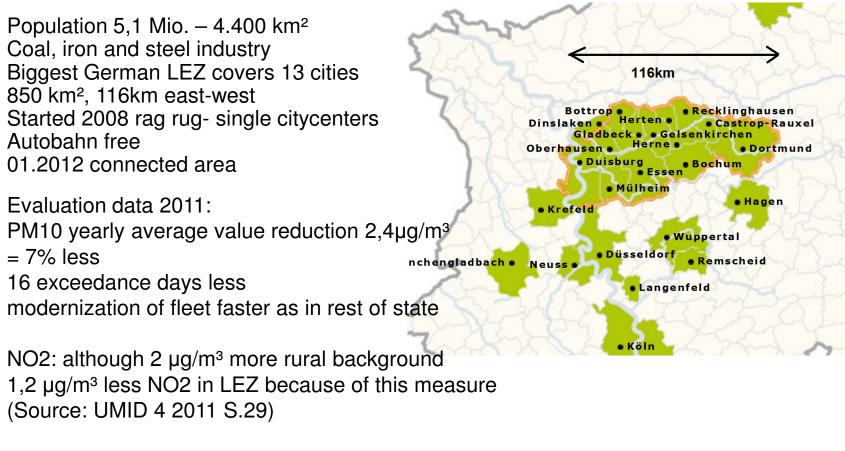
Average values (94 air quality plans):Long-range-transport53 %Motor vehicle traffic30 %Industry6 %Heating5 %



Air pollutants: Origin-related NO2 source analysis

Average values (107 air quality plans):

Long-range-transport Motor vehicle Industry Heating


Diegmann et al. 2014 (UBA-Texte 26/2014)

Low Emission Zones in Germany - Reasons to establish LEZ Leipzig

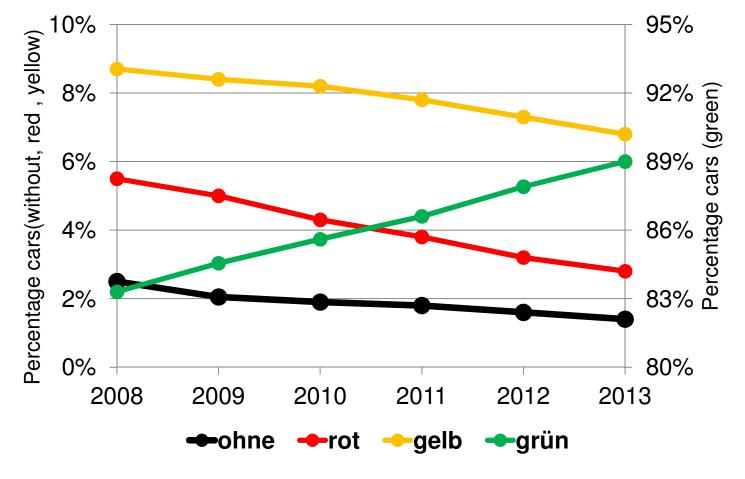
City of Leipzig: exceedance of limit values PM10 (since 2005) and NO2(since 2010) from 2008/50/EG yearly average value PM10 and NO2 40 µg/m³ (35 d/a exceedance allowed) daily average value PM10 50 µg/m³ NO2 1h average value 200 µg/m³ (18 h/a exceedance allowed) motorized road traffic No.2-PM-source (35%) No.1-NO2-Source (80%) 2011 LEZ implementation 184km² 62 % of area Umwelt Proof: 30% less toxic, traffic related soot ZONE Despite LEZ: new tourist-record +6% No business insolvencies: LEZ exceptions Infringement s: 1st year 7000; 2nd year 3000 Umweltzone (Variante 4), Fläche ca. 184 km² V Stadtgrenze Straßen Bahngleis

Low Emission Zones in Germany - LEZ Ruhrgebiet

numerical modeling: 2009 1/3 of heavy emission charged roads outside LEZ 7% of roads with PM limit value exceedance 12% of roads with PM limit value exceedance

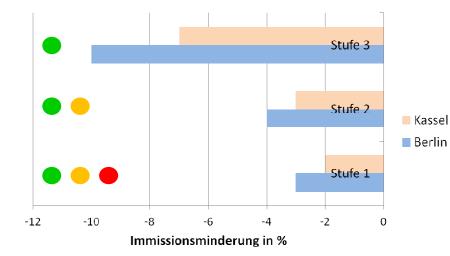
Input : Key criteria for implementation of LEZ (1)

No universal/general statement how to build al successful LEZ: Always particular case inspection

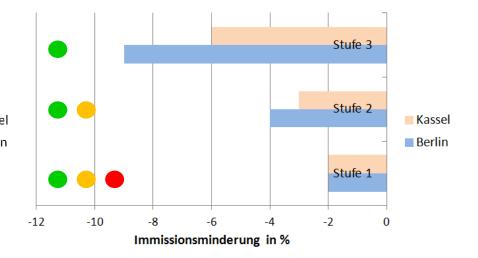

- Learn about the emissions/composition of the local fleet (e.g. motorbikes not relevant in Germany)
- Determine traffic-related pollutants + fingerprinting/source apportionment)
- Measurement and numeric modelling
 - -> Deploy dense measure network before and during the LEZ implementation
- Early LEZ drafting stage involve stakeholders and public
- Make the laws and set ambitious limit values
- Invitation for public and expert comments to laws and LEZ design
- Public hearing, participation
- Prepare court-proof watertight design of the LEZ and argumentation following your law and constitution is crucial.

Input : Key criteria for implementation of LEZ (2)

- Consider local circumstances (traffic and town planning, urban layout, social justice)
- Design the LEZ: big enough and with strict requirements (similar Euro 4 or better)
 -> include a big part of the fleet, so peripheral emissions can't dominate
 -> peripheral area changes fleet too
- Start soon, because of technical progress (graphic)
- guarantee the compliance: Controll the driving and parked cars for correct stickers (graphic)
- Avoid too many exceptions
- Check future trend (new emission standards and car classifications ...) and develop LEZ to prioritize future low-emission vehicles
- Apply other measures (Improve: traffic flow, public transport, car and bike sharing, restoration)


Time of implementation – "Start soon"

Percentage of vehicles with different labels in Germany


nach Diegmann et al. 2014

Effectiveness of early implemented LEZ : model results

Potential of reduction PM10 2007

Potential of reduction PM10 2010

Datengrundlage: UBA-Text 22/07: Maßnahmen zur Reduzierung von Feinstaub und Stickstoffdioxid

Compliance rate & control intensity

Kreis/Stadt	2008	2009	2010	2011	Quantity of
Augsburg		1359	0144	5071	reported label
Berlin	5608 🤇	6011	8369	11563	
Böblingen		6			infringement
Bochum		2937	1957	1493	
Bonn			127	70	
Bottrop		614	246	225	
Bremen		10309	3682	4460	
Dortmund		1402	1288	1285	
Duisburg		1949	164	575	
Düsseldorf		4432	2852	2158	
Essen		3830	1541	1579	
Frankfurt a.M.		5098	4881	5219	
Freiburg im Breisgau			1	3	
Gelsenkirchen		1020	837	428	
Hannover	71	3388	3353	3884	
Heidelberg			76	151	
Heilbronn		69	15	4	
Karlsruhe		73	14	9	Berlin: 3,4 Mio. residents
Kassel		9			Köln: 1,0 Mio. residents
Köln		5	5	31	

UBA-Texte 26/2014

Input: Challenges and solutions

LEZ is unpopular ("bureaucratic sanction") and will be jurisdictionaly attacked.

Car driver want a fundamental right of individual automotive mobility!

Local business/economy see the additional costs.

Opponents of LEZ : local economic representative IHK , ADAC, automotive industry pro driver Opponents deny efficiency and proportionality/ commensurability

Court-proof watertight design/argumentation following your law and constitution is crucial. The human health should be focused, not the driving freedom.

Lawsuits in Germany: LEZ must be: necessary, suitable and commensurate LEZ critics aim often at the commensurability No German LEZ withdrawal Until now, in all courts affirmed multiple times the proportionality of "LEZ" on first and second level of jurisdiction.

2011 a woman took the city of Wiesbaden to court because of the bad air quality. She won because of her right for clean air and the city must set up air quality plan and a LEZ was implemented.

Input: Challenges and solutions

Only long range transport responsible of limit value exceedance

"local measures avoid nothing" And **urban PM-pollution almost equal natural background** pollution (next slide picture) PM: longlife(slow reduction): long-range-> high background But: Hotspot/Rural-difference = 50% (around 10μg/m³) - > that's not "equal"

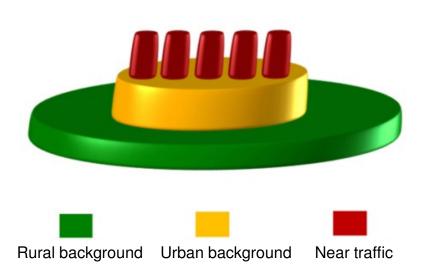
Other sources more important: (bei NOx ist traffic essencial; PM auch Abrieb and Aufwirbelung) Industrial plants and heating für die Luftverschmutzung mitverantwortlich und das mit einem nicht z unterschätzenden Prozentsatz.

Yes, traffic is in overall-emissions not so big source, but traffic is very important: In the streets are the limit-value-exceeding Hotspots

Emission≈Immission, the emission is almost undiluted at nose-level

The big industrial emissions are far from the cities and diluted.

No Impact – useless (ADAC) Other measure have more impact "Clean air YES – LEZ NO": SRU (German expert council environment): LEZ highest red. potential of all local measures LEZ have related to Immissions only a <10% reduction potential Related to emissions it's more relevant


Input: Challenges and solutions

Pollution regimes

RED Pollution dominated by traffic

YELLOW Pollution dominated by all urban sources, not dominated by a single source

GREEN Air quality widely unaffected by local sources

Input: Challenges and solutions

Administration and public effort (retrofitting/new car) too high: Tremendous additional costs for companies, medium-sized businesses, citizens and the state Hidden/cold robbery, because some 2005er cars forbidden

substantial economy costs: administrative costs

industry-oriented "Center Automotive Research" data: overall cost -launch LEZ: -primary costs (administrative costs + stickers): -second. costs (loss in financial value of the old cars): Clean air not for free - industry-oriented calculations validity?

rip off/Abzocke monetary fine 80,- € vehicle without valid sticker

State of the art and progress:

Because of technical progress is the air pollution sinking, even without LEZ intensification of LEZ is purposeless because there are almost no cars with red and yellow classification

Actual system can't prioritizise extrem emission-reduced vehicles -> classification development (new sticker colour)

ca. 12.100.000.000 Euro

- ca. 89.600.000 Euro
- ca. 11.900.000.000 Euro

Input: Challenges and solutions

criticism on "mass related limit value" : meaningless limit value -> meaningless measure because it's a "non-material-specific limit value"

Stoffspezifisch (PM)

particle size + shape + chemical composition + mass = toxicological effect (health supporting natural seasalt aerosols)

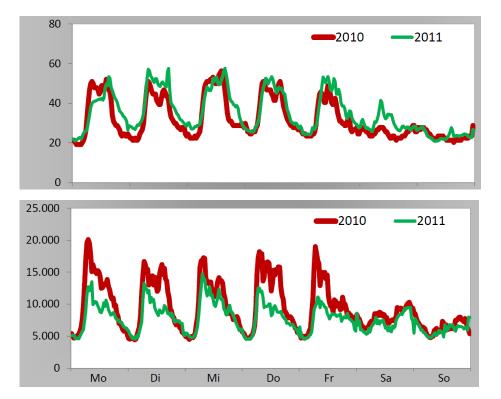
Complex measurement (expensive)

but:

Epidemiologic result: PM mass is important

Moreover particle number reduction through mass-specific limit value

.... Some results next page ...


Challenges: Mass- vs. Materialbased limit values / LEZ - Effectiveness

PM10 reduction in Leipzig Average weekly load curve

[in µg/m³]

PN 30-200 nm number reduction in Leipzig Average weekly load curve

[in 1/cm³]

Datengrundlage: LfULG and TROPOS https://publikationen.sachsen.de/bdb/artikel/18590

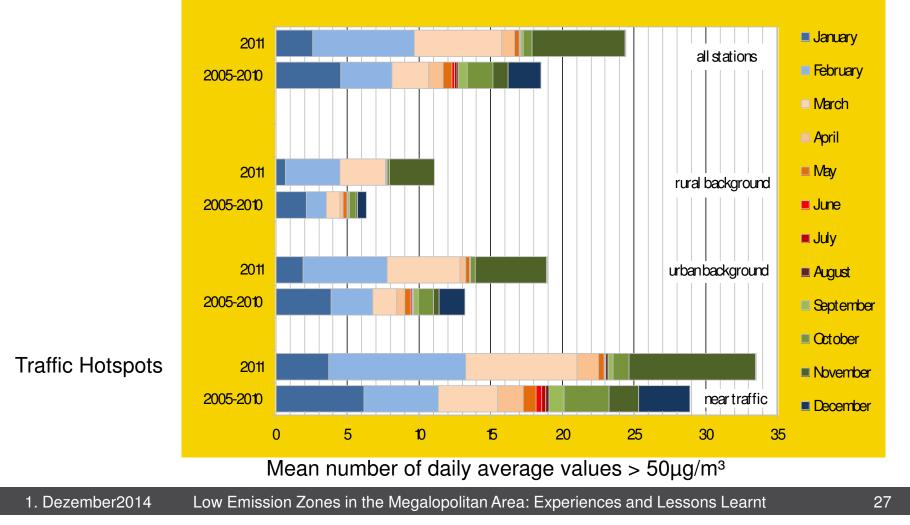
Input: Challenges and some solutions

Unrealistic testing cycle:

automobile emissions Euro 5/6 standard: testing cycle emissions << real-life emissions Euro-Norm compliance during vehicle testing, but not on-road Some Euro-6-vehicles can have emissions seven times worse than in testing cycle.

Other problems:

- Increased NO2-percentage in particle-filters.
- Too many vehicle exceptions in LEZ-area: no effect
- Temporary sources: e.g. big construction site


Meteorological conditions falsify results:

Meteorological conditions: inversions (next page) -atmospheric chemistry and stratification of the atmosphere -flow direction (transboundary long-range transport of pollutants) -wind speed and wash out processes -Indirect: Higher motor-emissions in cold months

Challenges: High-PM10- episode 2011

meteorological conditions: inversion layer with low wind speed: pollutants trapped at ground level + record of aridity >> accumulation

Input: Assessment of effectiveness - How to assess

Difficult assessment: Traffic, weather, relief shape are complex-dynamic systems No general rules or assessment standards Often huge data fluctuation at the single stations Results allows big space for interpretation

- comparison at temporary and/or spatial level

-> before/after and comparison of the LEZ-area with a city without LEZ

-Monitor change of traffic flow in and outside LEZ – traffic displacement?

-Monitor change of fleet structure

- -> statistics in license offices (too: reclassification after retrofitting), screening of license plates
- -Monitor air pollutant concentrations, identification of their origin
- -reference year with similar meteorological conditions
- -Dense monitoring network

-Review epidemiologic relevance; Consider disturbance variables / uncertainty of measurement -analyze first the summarized results, then the single mess station

Assessment of effectiveness - status

genuine truth: "the less coffee in aquarium, the more happy the fish"

PM2,5 yearly average value reduction 10µg/m³ "7 Month less life loss" (Zellner et al.2009)

Munich: 10% less PM10 (Cyrys 2009) SRU (German expert council environment): LEZ highest red. potential of all local measures

Evaluation data 2011 LEZ **Ruhrgebiet**:

PM10 yearly average value reduction $2,4\mu g/m^3 = 7\%$ less, 16 exceedance days less modernization of fleet faster as in rest of state NO2: although 2 $\mu g/m^3$ more rural background 1,2 $\mu g/m^3$ less NO2 in LEZ because of this measure (Source: UMID 4 2011 S.29) kilometers traveled: equal; no traffic displacement

In main streets in **Berlin** up to 3 % PM10 and 10 % NOx reduction Soot and particlenumberconcentration higher reductions possible: **Leipzig**: toxic, traffic related soot 1/3 less (TROPOS, LfULG)

And: Cities without LEZ benefit from near LEZ: e.g. Postdam near Berlin and airquality benefits, because in Postdam they need a sticker if they want to visit Berlin

Input: Air pollutant measurement and monitoring

federal state responsibility + UBA background >250.000 residents: air quality monitoring mandatory Traffic: minimum area 200 m², no measurement in very narrow streets

Requirements for monitoring (39. BlmSchV Annex 3)

Location:

- with the highest pollution and (in+)direct exposure
- representative character for population exposure
- large-scale status: air sample for at least 100m street
- Station windward of main wind direction
- The higher the pollution, the more station and intervalls

Sampling:

- CO, NO2, NO, SO2, PM10, ozone, (Pb, PM2,5, Benzol...)
- Inlet 270° without obstacles (buildings, trees 0,5m away); 1,5m-4m high
- Inlet max. 10m from edge of carriageway; min. 25m from congested crossroads

Other factors: accessibility, public/maintainance security , interference, power supply

Summary

LEZ: one instrument for cleaner air

Assessment of effectiveness complex

LEZ are a meaningful and important measure to fight traffic-related air quality problems and protect human health and the environment

Vielen Dank für Ihre Aufmerksamkeit!

SOURCES AND LINKS FOR FURTHER INFORMATION: https://www.umweltbundesamt.de/themen/luft/luftschadstoffe/feinstaub/umweltzonen-in-deutschland https://www.umweltbundesamt.de/themen/luft https://de.wikipedia.org/wiki/F%C3%BCnfunddrei%C3%9Figste Verordnung zur Durchf%C3%BChrung des Bundes-Immissionsschutzgesetzes Register of German LEZ https://de.wikipedia.org/wiki/F%C3%BCnfunddrei%C3%9Figste Verordnung zur Durchf%C3%BChrung des Bundes-Immissionsschutzgesetzes Immissionsschutzgesetzes#.C3.9Cbersicht der Verkehrsverbote in Deutschland https://www.umweltbundesamt.de/publikationen/bestandsaufnahme-wirksamkeit-von-massnahmen-der http://www.gesetze-im-internet.de/bimschg/ 47.html