

Heavy Duty Vehicles' CO₂ legislation in Europe and VECTO simulation tool

Dr Dimitrios Savvidis European Commission DG Climate Action

8th Forum on Energy Efficiency in Transport: "Energy Efficiency Regulation for Heavy-Duty (HD) Vehicles" 28-30 September 2015, Mexico City, Mexico

HDV CO₂ in the EU Policy context

Transport within the EU is responsible for around one fifth of our greenhouse gas emissions.

While these emissions fell by 3.3% in 2012, they are still 20.5% higher than in 1990.

Road transport accounts for the vast majority – around 70% – of all transport emissions.

Data source: European Commission: Transport pocketbook 2014

Transport emissions by mode

Share by Mode in Total Transport Greenhouse Gas Emissions (GHG), including International Bunkers : EU-28 (2012)

Road transport emissions

Estimated CO₂ emission by type of road vehicle

Cars

Two wheelers

- Light duty vehicles
- Heavy duty trucks
- Buses and coaches

-- Cars and light duty vehicles (vans): 70%-- Heavy duty trucks, buses and coaches: 30%

* Source: Ricardo-AEA

Communication strategy

Brussels, 21.5.2014 COM(2014) 285 final

COMMUNICATION FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT

Strategy for reducing Heavy-Duty Vehicles' fuel consumption and CO2 emissions

In May 2014 the Commission adopted a Communication entitled "Strategy for reducing HDV fuel consumption and CO₂ emissions" COM(2014)285

Roadmap for the Energy Union (Feb 15)

Actions	Responsible party	sible party Timetable		IEN
2030 Climate and Energy Framework				
Transport actions				
Fair and efficient pricing for sustainable transport – revision of the Eurovignette Directive and framework to promote European electronic tolling	Commission	2016		
Parious of market access rules for road transport	Commission	2016		
to improve its energy efficiency	Commission	2010		
Master Plan for the deployment of Cooperative Intelligent Transport Systems	Commission Member States Industry	2016		
Review of Regulations setting emission performance standards to establish post-2020 targets for cars and vans	Commission	2016 - 2017		
Establishing a monitoring and reporting system for heavy duty vehicles (trucks and buses) with a view to improving purchaser information	Commission	2016-2017		
	Actions 2030 Climate and Energy Framework Transport actions Fair and efficient pricing for sustainable transport - revision of the Eurovignette Directive and framework to promote European electronic tolling Review of market access rules for road transport to improve its energy efficiency Master Plan for the deployment of Cooperative Intelligent Transport Systems Review of Regulations setting emission performance standards to establish post-2020 targets for cars and vans Establishing a monitoring and reporting system for heavy duty vehicles (trucks and buses) with a view to improving purchaser information	ActionsResponsible party2030 Climate and Energy FrameworkTransport actionsFair and efficient pricing for sustainable transport - revision of the Eurovignette Directive and framework to promote European electronic tollingCommissionReview of market access rules for road transport to improve its energy efficiencyCommissionMaster Plan for the deployment of Cooperative Intelligent Transport SystemsCommission Member States IndustryReview of Regulations setting emission performance standards to establish post-2020 targets for cars and vansCommission CommissionEstablishing a monitoring and reporting system for heavy duty vehicles (trucks and buses) with a view to improving purchaser informationCommission	ActionsResponsible partyTimetable2030 Climate and Energy Framework—Transport actions—Fair and efficient pricing for sustainable transport – revision of the Eurovignette Directive and framework to promote European electronic tollingCommissionReview of market access rules for road transport to improve its energy efficiencyCommissionMaster Plan for the deployment of Cooperative Intelligent Transport SystemsCommission Member States IndustryReview of Regulations setting emission performance standards to establish post-2020 targets for cars and vansCommission CommissionEstablishing a monitoring and reporting system row to improving purchaser informationCommission Commission	ActionsResponsible partyTimetableSoS2030 Climate and Energy FrameworkIITransport actionsIIFair and efficient pricing for sustainable transport - revision of the Eurovignette Directive and framework to promote European electronic tollingCommission2016Review of market access rules for road transport to improve its energy efficiencyCommission2016Master Plan for the deployment of Cooperative Intelligent Transport SystemsCommission Member States Industry2016Review of Regulations setting emission performance standards to establish post-2020 targets for cars and vansCommission2016 - 2017Establishing a monitoring and reporting system for heavy duty vehicles (trucks and buses) with a view to improving purchaser informationCommission2016-2017

EE

X

X

X

X

X

GHG

X

X

X

X

X

R&I

X

X

X

ΕN

Climate Action

CO₂ growth-reduction of fuel saving potential

Current trends in CO₂ emissions from HDVs are unsustainable.

Between 1990 and 2010 CO_2 emissions are estimated to have grown by about 36%, despite the economic crisis interrupting the previous steady growth.

HDVs account for about a quarter of road transport emissions and around 5% of total EU CO_2 emissions - a greater individual share than international aviation or shipping.

CO₂ growth-reduction of fuel saving potential

Without action, CO_2 emissions from HDVs are expected to remain at best stable over the long term at around 35% <u>above</u> their 1990 level.

Such 'no policy change' outcomes are clearly <u>incompatible</u> with the EU long term objective of reducing greenhouse gas emissions from transport <u>by around 60%</u> by 2050 (vs. 1990 levels).

Lack of market transparency

CO₂ emissions from, and fuel consumption of, cars and vans are established when vehicles are manufactured.

However, there is no system of measurement for \underline{CO}_2 emissions from HDVs in the EU and this reduces transparency for prospective vehicle purchasers in the EU market.

Absence of a measurement methodology

This lack of knowledge is a barrier to the purchase of more efficient HDVs and is a gap that needs to be addressed.

To this end the Commission has put great effort in recent years into developing the VECTO computer simulation tool to estimate HDVs' fuel consumption and CO_2 emissions for the **whole vehicle**.

Accordingly, the first priority is to close the knowledge gap on these emissions and to start their registering and monitoring.

Challenges

Further development of the VECTO simulation methodology; its testing to ensure its accuracy compared to real world emissions and its adaptation as a *downloadable executable file*;

Working with DG GROW to amend the "type approval" legislation to enable the application of VECTO when the vehicle is produced/registered;

Preparing co-decision legislation to require the monitoring and reporting of data when the vehicle is produced/registered.

International competitiveness

EU manufacturers account for over 40% of the global production of HDVs. The Commission's <u>whole vehicle</u> measurement approach is not comparable with those of the US and Japan.

<u>US:</u>

The 2011 HDV CO₂ rule issued by EPA does not cover the complete emissions of each vehicle, but only the cabin and chassis parts, in combination with a separate rule on engine emissions. In June 2015, new standards have been proposed to reduce the fuel consumption and GHG of HDVs. The new Phase 2 regulations would be implemented from model years 2018 to 2027, building upon initial standards that cover model years 2014 to 2018.

Action

International competitiveness

Japan:

For its part, Japan has a fuel consumption rule with targets based on the best-performing vehicles. Over the long term the various national legislations are expected to <u>converge</u>, as those addressing emissions of vehicles' exhaust gases have done.

Need for action

Many countries, such as Japan, the US, Canada and China have already introduced CO_2 standards.

EU companies account for over 40% of the global production of trucks and buses and, while they are fuel efficient, the introduction of greater transparency, to allow purchasers greater choice, would clearly benefit the market.

Commission action in this area is necessary.

Delivering this ambitious agenda will not be easy, and will require major efforts to convince all stakeholders to take rapid action.

CO₂ Standards

Feedback from the consultation on the preparation of a legislative proposal on the effort of MS to reduce their GHG emissions to meet the EU's GHG emission reduction commitment in a 2030 perspective:

UK: "We also support the <u>development of CO₂ emission</u> <u>standards for HGVs</u>"

Slovenia: "Promoting energy efficiency and overall reducing energy demand, e.g. in transport sector with regard to already identifies caveats in testing vehicles emissions, reviewing the CO₂ emission performance standards for new cars and lightduty vehicles, and <u>new similar standards for HDVs</u>"

CO₂ Standards

Belgium: "A further tightening of CO_2 emission performance standards for new passenger cars and LDVs, and the <u>adoption</u> <u>of similar standards for HDVs post-2020</u>, as well as other initiatives aimed at the use of alternative fuels and the electrification of the transport system;"

Netherlands: "The Netherlands would like to see a comprehensive EU transport policy which aims at a substantial reduction of CO_2 in fuels as well as vehicles. Important components of a comprehensive EU transport policy should be the continuation of the CO_2 reduction target in the Fuel Quality Directive post-2020 and <u>an ambitious CO_2 target for vehicles</u>.

Vehicle Energy Consumption Calculation Tool

Simulation tool to calculate both, fuel consumption and CO₂ emissions from the <u>whole</u> vehicle

Vecto development

- VECTO has been developed by the Commission (DG CLIMA and JRC) with TUG support over the last four years
- ACEA, OEMs and component manufacturers have been also involved and provided key input and test vehicles
- DG CLIMA is the leader for this project
- Further development will take place in the next years.

Passenger cars: Easy to measure CO₂

Heavy Duty Vehicles...??????

HDVs are more complicated than LDVs

- Low, medium, high, long, short cab etc
- 2,3,4,5,6 axles, 4x2, 4x4, 6x2, 6x4, 6x6 etc
- Different tires for each axle, single/twin tires etc
- Same engine but different gear boxes/axles ect
- Rigid, semi-trailer, tractor, coach, bus, citybus etc
- Any combination mentioned above

Millions of types!!!

HDVs Type Approval

Most requirements are safety-related:

Cab Strength FUP & RUP Lateral Protection AEBS LDWS EVSC Steering Effort Audible warning Braking Speedometer Speed limiters Tyres Identification of controls Windscreen defrosting and demisting Indirect vision devices Lighting installation Spray suppresion systems Windscreen wiper/washer

The following scheme is applicable to type approve a whole vehicle (2007/46/EC)

Front Underun protection test (UN Reg 93)

Lighting installation validation (UN Reg 48)

Verification of the field of vision (UN Reg 46)

1 We need type approved components from our suppliers, issued by their TAA

2 We perform the system certification with any Technical Service /Type Approval Authority 3

We obtain system type approvals from Type Approval Authorities we work with

> Climate Action

Once the puzzle is completed (around 60 system approvals), the whole vehicle (type) approval can be issued by one Type Approval Authority This is the description of a EC WVTA step by step approach

CO₂ certification will be an additional piece of the puzzle

*** * * * *

Ok for registration.

5

Once the TA is obtained, the complete vehicles fulfilling this approval shall be registered

Regulatory situation in EU

Existing Regulations setting performance standards for:

- Cars (Reg. 443/2009), and
- Vans (Reg. 510/2011)

Currently no legislation setting performance standards for HDV CO₂ emissions or parts thereof

Current test cycle procedure for HDVs is based on the engine (e.g. for regulation air pollutant emissions), not the whole vehicle

VECTO Graphical User Interface (GUI)

VECTO's modes

VECTO offers a <u>declaration mode</u>, where all generic data and the test cycle are allocated automatically as soon as the **vehicle class** is defined.

An <u>engineering mode</u> is also offered, where the user can select and change all input data to allow recalculation of test data e.g. for model validation.

VECTO's characteristics

-- VECTO can do any simulation if given the input data, like in the Proof of Concept, but this is only in the engineering mode.

- -- Test cycle file can be replaced and take any cycle or route travelled
- -- In general, input files are open and fully described in the manual

VECTO's characteristics

- A non-expert will **not** be able to perform a correct simulation for various reasons:
- Access to official data???
- Can always use the templates already loaded in VECTO but results won't be accurate
- Most likely to get wrong results at the end of the simulation

VECTO's characteristics

- Current VECTO includes data for a 12t rigid and a
 40t tractor in the declaration mode.
- A 24t coach is also included in the engineering mode in addition to the established default factors.
- These data do not correspond to real vehicles in order to avoid confidentiality issues.
- However, they are realistic data including engine maps and produce realistic output results.

VECTO output

In the *declaration mode* of VECTO fuel consumption and CO₂ emissions are automatically calculated for all CO₂ test cycles allocated to the vehicle for average payload, full load and empty driving. Results are given in **g/km, g/cm³-km** and **g/ton-km** or **g/pass-km**.

Which of these values will be used in a final certification process is not decided yet.

Components and input data

For the following components, relevant **input data** for VECTO have to be delivered from standardised test procedures :

- -- Vehicle mass
- -- Tires (dimensions and rolling resistance coef)
- -- Engine (engine fuel flow map)

-- Transmission (transmission ratios, loss maps for gear box and axle, default values optional)

-- Aerodynamic drag (Cd x A, for some vehicle classes generic values can be used)

Components and generic values

For the following components **generic values** are defined, which are allocated by the software VECTO to the vehicle depending on the vehicle class and mission profile. :

- Auxiliaries (alternator, air-compressor, steering pump, cooling fan, Heating Ventilation AC - HVAC)

- Mass of the standard bodies and trailers
- Vehicle payload (truck) or passengers weight (bus)

- Test cycle

Simulations steps

- Identification of the vehicle
- Allocation of generic data
- Convert distance based cycle to time based
 - Apply driver's assist functions (overspeed, Eco-Roll, Forward looking braking etc.)
- Vehicle longitudinal dynamics
- Generic driver gear-shift model (AMT,AT,MT) to compute rpm
- Interpolation from fuel map, application of "WHTC correction factors"
- Information for customer
- Reporting for TAA
- Data for monitoring purposes

Model structure - Four main modules

Model structure - Four main modules

FC Calculation

Mission profiles

Trucks

- Urban delivery
- Regional delivery
 - Long haul
 - Construction
 - Municipal utility

Buses and coaches

- City-bus heavy urban
 - City-bus urban
 - City-bus suburban
 - Interurban bus
 - Coach

Test cycles – Target speed cycles

Pros: gives realistic engine load pattern for all weight/power/transmission combinations Cons: slightly increased computation time

Truck cycles:

- Long Haul
- Regional Delivery
- Urban Delivery
- Municipal Utility
- Construction

Velocity and gradient over disctance

Input data: Test cycles - driver models

Input data: Aerodynamic drag - RRC

Constant speed test (at 2 speeds)

- Rim torque meter
- Anemometer
- Correction for gradient and for vehicle speed variations
- Correction for ambient P and T
- $F = FO + Cd * A * v^2 * r/2$

Important tire and vehicle conditioning for accurate Cd*A results.

RRC calculated in these tests not to be used. Official value to be used for monitoring purposes

Climate Action

Rigid and tractors classification

The generic values are allocated to the vehicle by VECTO automatically depending on the HDV class in which the vehicle falls.

For each class the corresponding test cycles, the standard body or trailer and the payload are defined as well as the data relevant for the simulation of the generic auxiliaries.

								Norm body					
		Identification of		(vehic	le configu	ration and	d cycle allo	ocation)	all	ocati	on		
Axles	Axle configuration	Chassis configuration	Maximum GVW [t]	< Vehice dass		Long haul	Regional delivery	U rban delivery	Municipal utility	Construction	Standard body	Standard trailer	Standard semitrailer
2	4x2	Rigid	>3.5 - 7.5	0			R	R			BO		
		Rigid or Tractor	7.5 - 10	1			R	R			B1		
		Rigid or Tractor	>10 - 12	2		R	R	R			B2		
	4x2	Rigid or Tractor	>12 - 16	3			R	R			B3		
2		Rigid	>16	4		R+T	R		R		B4	T1	
2		Tractor	>16	5		T+S	T+S						S1
	4x4	Rigid	7.5 - 16	6					R	R	B1		
		Rigid	>16	7						R	B5		
		Tractor	>16	8						T+S			W1?
	6x2/2-4	Rigid	all weights	9		R+T	R		R		B6	T2	
		Tractor	all weights	10		T+S	T+S						S2
3	6x4	Rigid	all weights	11						R	B7		
		Tractor	all weights	12						R			S3
	6×6	Rigid	all weights	13						R	W7		
	0/10	Tractor	all weights	14						R	W7		
	8x2	Rigid	all weights	15						R	B8		
4	8x4	Rigid	all weights	16						R	B9		
	8x6 & 8x8	Rigid	all weights	17						R	W9		
						R	= Rigid &	Body	•				
	R+T = Rigid & Body & Trailer "												
						T+S	= Tractor	& Semitra	ailer				
						W	=no (Cd*A)	measurem	ient, only ve	hicle weigh	nt and	front	al are
						*) Whethe	rit is suffic	ient to sim	ulate the tr	uck-trailer	combi	natio	n
						based on	cd*A for Ri	gid & Body	or the full-v	ehicle test	forae	rodyr	amic
						drag has to be clar	to be perfor	rmed addit	ionally with	Rigid & Bo	dy & T	raile	r has
					_	to be clar	meu						

Vehicles' segmentation

				A	CEAproposal V	/ehicle segment	tation trucks ≥ 7	7.5t]
	I de ntifi	cation vehicle con	figuration	Class		Vehicle confi	Cycle allocation guration / weig	Body/ trailer allocation			
	Axle configuration	Chassis configuration	*** weight	Vehicle Class	Long haul	Regional delivery	Urban delivery	Municipal utility	Construction	Standard Bodes (B) Standard Trailer (T) Standard Semitrailer (ST)	Buses and coaches have separate table
2 axles	4x2	Rigid + (Tractor*)	7.5t - 10t	1		R (pc)	R (pc)			B1	
		Rigid + (Tractor*)	> 10t - 12t	2	R+T (pc)	R (pc)	R (pc)			B2 T1	
		Rigid + (Tractor*)	> 12t - 16t	3		R (pc)	R (pc)			B3	
	1	Rigid	> 16t	4	R+T (14.0t)	R (4,41)		R (4.4!)**		B4 T2	
	1	Tractor	> 16t	5	Tr+ST (19,3t)	Tr+ST (12.9t)				ST1	
	4x4	Rigid	7.5t - 16t	(6)		exclude all-wheel-d	live vehicles 4x4 (sales volume < 1%)		
		Rigid	> 16t	(7)		exclude all-wheel-d	trive vehicles 4x4 ()			
		Tractor	> 161	(8)		exclude all wheel o	hive vehicles 4x4 (sales volume < 1%	>		1
3 axles	6x2/2-4	Rigid	al	9	R+T (19,3t)	R (7,11)	J	R (7.11)**	<u>, 1</u>	B6 T2	
		Tractor	al	10	Tr+ST (19,3t)	Tr+ST (12,9t)				ST1	
	6x4	Rigid	al	11					R (7.1t)	(generic weight+CdxA)	
	i marte la	Tractor	al	12					Tr+ST (12,9t)	(generic weight+CdxA)	
	6x6	Rigid	al	(13)		exclude all wheel d	invo vehicles 6x6 (cales volume < 1%)		
		Tractor	al	(14)					<i>,</i>		
4 axles	Bx2	Rigid	al	(15)		exclude 8x3	2 (very low sales w	dume < 1%)			1
	Bx4	Rigid	al	16					R (12,9t)	(generic weight+CdxA)	
	8x6/8x8	Rigid	al	(17)		exclude al-whee	drive vehicles (sa	les volume < 1%)			1
EMS 2 axles	4x2	Tractor	al		Tr+ST+T (26,5t)	Tr+ST+T (17,5t)		ST1-v2 12		T2 ST1-v2#	
EMS	2	Rigid	al		R+D+ST (26,51)	R+D+ST (17,5t)	BG	D+ST1-v2	2 State	B6 ST1-v2 ^d	
3 axles	0//2	Tractor	al		Tr+ST+T (26,5t)	Tr+ST+T (17,5t)	2	ST1-v2 T2		T2 ST1-V2	

Climate Action

* Tractors are treated as Rigids but with specific curb weight of tractor. Airdrag and weight/payload for sem/trailer as for Rigid (simplification)

** Municipal utility vehicles with generic weight + CdxA

*** Weight is maximum gross vehicle weight

Source: ACEA white book

Busses classification

			Identification of vehicle class	Segmentation and cycle all					ation		
Axles	Axle configuration	Chassis configuration	Characteristics	Maximum GVW [t]	< Vehice class		Heavy Urban	Urban	Suburban	Interurban	Coach
2		City	Class I + low floor or low entry, no luggage compartment	<18	B1		E	UR	SU		
	4x2	Interurban	Class II + luggage compartment and/or floor height < 0.9m	<18	B2	Π				c	
		Coach	Class III + floor height > 0.9m and/or double decker	<18	B3	Π					со
3 6	6x2	City	Class I + Low floor or low entry, no luggage compartment	>18	B4	Π	HU	UR	SU		
		Interurban	luggage compartment and/or floor height < 0.9m	>18	B5	Π				IU	
		Coach	floor height <u>>0.9m</u> and/or double decker	>18	B6						СО

Simulation of engine power

Simulation of engine power: Vehicle specific Vehicle specific Vehicle specific **m*g*sin**α C_d*A transmission; $P_{e} = P_{roll} + P_{air} + P_{acc} + P_{grad} + P_{trap}$ Vehicle + tire specific Vet m_{vehicle}, m_{load}, iciencv RRC from drum tests ponent specific loss possible FC interpolated from 1200 Simu engine map in 1Hz a_{tire} × π) cle transmission ratios I_{gear}, İ_{axle}

Climate Action 1500 1750 c [rpm], [rpm]

Shares of energy consumption

EURO V semitrailer 28 t

EURO V city bus

Proof of Concept activity

Scope:

- Prove that simulation based monitoring can deliver results that accurately reflect fuel consumption and performance of modern HDVs
- Verify the validity and soundness of the approach
- Extensive measurements concluded February 2013
- Joint Commission-ACEA activity Included
 - 2 HDVs provided by DAF and Daimler
 - Proving ground testing (Iveco's circuit)
 - Chassis dyno testing (JRC)
 - On road / PEMS testing (JRC)
 - Engine test bed testing (JRC)

Wheel rim (Actros) Torque measurement Axis (CF75) Zeroing Daily basis to eliminate drift High precision GPS (Actros) **Positioning / speed** Sensors at fixed points on ground (CF75) **Ultrasonic Wind Anemometer** Wind speed and wind angle (both) Ambient Weather station installed on board temperature, (both) humidity, pressure OEM integrated flow meter (both) **Fuel consumption** AVL KMA flowmeter (where possible)

Vehicle mass

JRC's balance

Action

Equipment used

Test vehicles-Route

Report's conclusion and follow-up

- Simulated FC was calculated with a range of $\pm 3\%$ from the real world measurements or even less.

- Finalize and validate topics remaining open in the methodology such as gearbox and driveline efficiency, auxiliary units power consumption, automatic gear shifting strategies, mobile air-conditioning simulation for city buses.

- Perform a sensitivity analysis in order to more accurately quantify the uncertainty of the method for different vehicle types/categories.

- Investigate the necessary conditions for expanding the methodology to other HDV categories.

JRC SCIENTIFIC AND POLICY REPORTS

Development of a CO₂ certification and monitoring methodology for Heavy Duty Vehicles – Proof of Concept report

Georgios Fontaras

Contributing authors: Martin Rexeis, Stefan Hausberger, Antonius Kies (TUG) Jan Hammer, Leif-Erik Schulte (TÜV), Konstantinos Anagnostopoulos, Urbano Manfredi, Massimo Carriero and Panagiota Dilara (JRC)

2014

The full report can be found on DG Clima's website

http://ec.europa.eu/clima/policies/transpo rt/vehicles/heavy/docs/hdv_co2_certificati on_en.pdf

Clin

Report EUR 26452 EN

Commission

Monitoring CO₂ Emissions from HDV in Europe – An Experimental Proof of Concept of the Proposed Methodological Approach

-1-

G. Fontaras¹*, R. Luz², K. Anagnostopoulos¹, D. Savvidis³, S. Hausberger² and M. Rexeis²

¹ European Commission, Joint Research Centre, Institute for Energy and Transport,

georgios fontaras@jrc.ec.europa.eu

- ² University of Technology Graz
- ³ European Commission, Directorate General Climate Action (DG CLIMA)

Abstract

The European Commission in joint collaboration with Heavy Duty Vehicle manufactures, the Graz University of Technology and other consulting and research bodies has been preparing a new legislative framework for monitoring and reporting CO₂ emissions from Heavy Duty Vehicles (HDVs) in Europe. In contrast to passenger cars and light commercial vehicles, for which monitoring is performed through chassis dyno measurements, and considering the diversity and particular characteristics of the HDV market, it was decided that the core of the proposed methodology should be based on a combination of component testing and vehicle simulation. Emphasis is put on accurately simulating the performed of different vehicle component and achieving realistic fuel consumption results. A proof of concept was launched aiming to test and prove that these targets are achievable.

A series of experiments were conducted on 2 different trucks, a Daimler 40ton Euro VI, long haul delivery truck with semi-trailer and a DAF 18 ton Euro V rigid truck. Measurements were performed at the Joint Research Centre's HDV chassis dyno labs and on the road. A vehicle simulator (Vehicle Energy Consumption Calculation Tool - VECTO) has been developed to be used for official monitoring purposes and the results of the measurements were used for its validation. As inputs the simulation based methodology considers test track measurement of driving resistances (eg air drag), determination of drivetrain losses (e.g. gearbox), determination of power demand of engine auxiliaries (eg. cooling fan) and other consumers (e.g. steering pump), measurement of the engine fuel consumption map as extension to the engine's type approval tests (as described in EURO VI legislation). Co_2 emissions of the vehicle are then calculated using the aforementioned input data for predefined representative driving cycles and mission profiles.

For the two Heavy Duty vehicles tested and simulated on the same test route, fuel consumption was calculated always within a $\pm 3\%$ range from the real world measurement, and in several cases even closer than that (in the order of $\pm 1.5\%$). Given the variability of the actual measurement ($\sigma = 2\%$), it is concluded that a future certification scheme can be based on vehicle simulation tools.

Introduction

Heavy-Duty Vehicles (HDV) represent about a quarter of the European Union's (EU) road transport CO_2 emissions and some 6% of the total CO_2 emissions. In spite of some improvements in fuel efficiency in recent years, overall HDV CO_2 emissions are still rising, mainly due to increasing road freight traffic. The need for a strategy addressing CO_2 emissions from the transport esector has been recognized by the European Commission (EC) in its 2010 Strategy on Clean and Energy Efficient Vehicles. Moreover, the EC's 2011 White Paper on transport (EC 2011) describes a pathway to increase the sustainability of the transport system.

One key factor for achieving such targets is a robust CO₂ and fuel consumption monitoring method that reflects to the best possible extent the actual performance of the vehicles over real operating conditions and the comparative advantages of different vehicle models and technology packages available in the market. This in turn provides appropriate information to the end user and better supports the introduction into the market of vehicles with lower fuel consumption(AEA-Ricardo 2011). It also allows the collection of valuable information needed for implementing necessary policy measures to facilitate the achievement of the targets set.

While car and van CO₂ emissions (M1-N1 vehicles) are being measured according to an agreed method, HDV emissions so far are not measured in a standardized and consistent way. Consequently no reliable baseline as to the actual amount of these emissions exists. To fill this gap, a series of still on-going projects was initiated by EC. Aim of the research performed was the creation of standardized method to quantify and report CO₂ emissions from HDVs. Initial studies and feedback received from OEMs suggested that the approach that best fits the characteristics and particularities of the HDV

20th International Transport and Air Pollution Conference 2014

PublishedinTAP Conference,Graz,Austria,September 2014

Proof of concept 12t 4x2 rigid, Class 2

EUROCARGO ML120 E25 Wheelbase: 4818mm Cab: MLC, aerodynamic spoiler Engine: 185kW, 6cyl, EURO VI Gearbox: ZF 9S-75TO Rear Axle: AM MS10, ratio 1:4.68 Tires: Continental 245/70R19.5 Payload: 3t (ACEA White book)

Test campaigns

<u>Urban:</u>

- Collection of data on a typical urban mission (24Km) in Turin - Italy

- 11 tests
- Good statistical margin of error of the measured fuel consumption
- Monitored values:
 - --Vehicle and engine speed
 - --Instantaneous and accumulated fuel consumption
 - --Gear and Torque
 - --Acceleration

Correlation with VECTO

Climate Action

Fuel consumption [l/100km]

Road test Fuel Consumption [I/100Km]
 Simulated Fuel Consumption [I/100Km]

Simulated fuel consumption in a typical urban mission is 5,2% less than the real fuel consumption

Vehicle speed and gear shift had a similar trend

Further steps

Main topics for trucks are:

- influence of tire RRC on the aerodynamic drag test
- engine test accuracy demands
- enhance the validation method (SiCo test procedure)
- improvement of the software reliability
- test and validation of all parts of the certification procedure and of the entire system
- Automatic gear box model is relevant for some trucks

Further steps

The truck category below 7t is not yet included in VECTO but shall be integrated into future legislation.

It is assumed that the existing method covers the small truck class to a large extent but some technical details may demand different approaches in some simulation and test details and certainly all default data sets have to be elaborated for this new HDV class (mission profiles, loading, generic component data sets).

Semi-Forward LCV Vehicles

Scudo/Boxer/ Jumper

Transit

Climate Action

Master/NV400

***Source: ACEA**

Cabover "Japanse type" Vehicles

Climate Action ***Source: ACEA**

Cabover "European type" Vehicles

Light-duty: Test of the complete vehicles on the chassis-dyno

Heavy-duty: Test of the engine on the engine-bench

(*) Only for variant/version of vehicle with RM > 2.610 provided that they also meet the requirements of GHG.

Vehicle categories N2 and M2

Reference Mass (kg)

Timeline (trucks)

- VECTO development: on-going
- Dissemination and trials: from 2013 to mid-2016
- Preparation of possible legislative proposals: 2015-2016
- Possible first reporting year: 2018

Thank you for your attention

- I will be happy to address your questions
- VECTO demonstration will follow
- More info can be found at: <u>http://ec.europa.eu/clima/policies/transport/vehicles/he</u> <u>avy</u>
- Contact details:

Dimitrios SAVVIDIS: <u>dimitrios.savvidis@ec.europa.eu</u>