

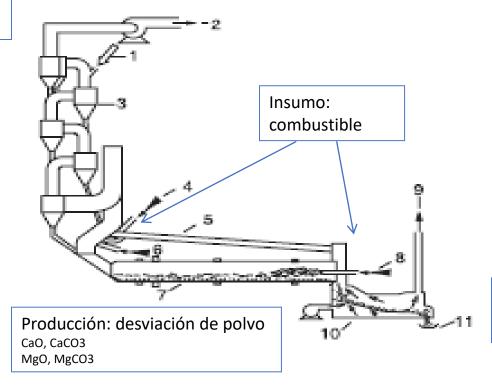
Preparación de un Sistema de Comercio de Emisiones en México(SiCEM) Sector Cemento

Felix Nickel, FutureCamp Climate GmbH

Diapositivas específicas sobre el monitoreo del sector: Cemento

Descripción general del proceso

Insumo: harina cruda


CaCO3 MgCO3

Sin carbonato C

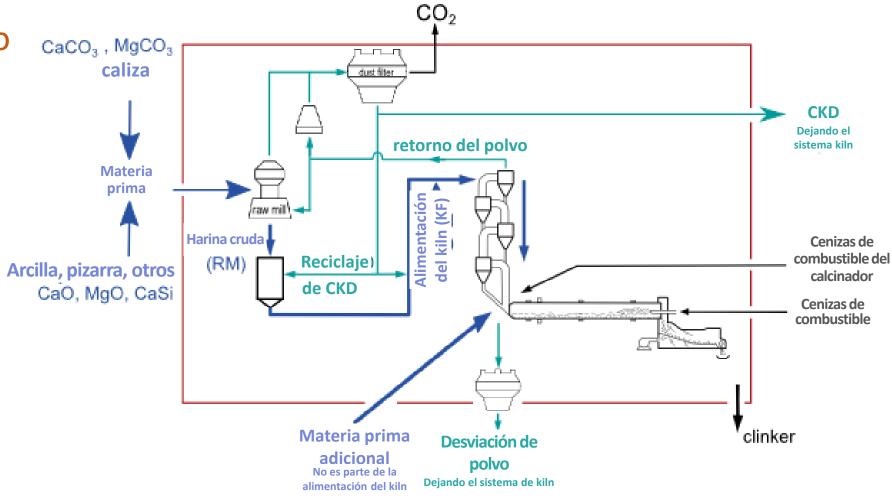
Kiln rotatorio con calcinador y conducto de aire terciario

- 1 Alimentaddor de kiln
- 2 Gas crudo a molino crudo y precipitador electrostático
- 3 Precalentador de ciclón
- 4 Calcinador
- 5 Ducto de aire terciario
- 6 Combustible
- 7 Kiln rotatorio
- 8 Combustible
- 9 Salida de aire del enfriador de clinker
- 10 Enfriador de parrilla de vaivén
- 11 Clinker

Producción: gas de escape co2

Producción: clinker

CaO MgO


On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Fuente: VDI 2094

Clinker de cemento

Fuente: WBCSD Cement Sustainability Initiative (CSI) / ECRA GmbH. http://www.cement-co2-protocol.org/en/Content/Internet_Manual/tasks/mass_balance_of_kiln_system.htm
On behalf of:

Descripción General del Material

Procesos con emisiones de CO₂:

- Combustión: Calor primario y secundario
 - Combustibles convencionales: carbón, coque de petróleo, aceite mineral pesado/ligero, gas natural
 - Alternativo: Todo tipo de residuos homogeneizados (líquidos y sólidos), lodos, lodo de fibras, neumáticos de caucho
 - Biogénico: astillas, fracción biogénica de residuos
- Emisiones relacionadas con el proceso:
 - Carbonatos en materiales de insumos
 - Sin carbonatos en harina cruda
- → Objetivo: Monitoreo completo y transparente de las emisiones de CO₂

Métodos de Registro (I)

Monitoreo de Combustión de Combustible – Tasa de Actividad (TA):

- Gases y sustancias líquidas: medición del flujo y volumen estándar;
- Sólidos: pesaje;
- Notas de envío/facturas (siempre que el proveedor utilice la medición adecuada);
- Consideración de los cambios del nivel de inventario;
- Métodos de estimación para flujos de sustancia "de-minimis";
- Identificación de incertidumbres;
- Verificación de plausibilidad.

Cálculo: $CO_2 = AR \times NCV \times EF$

Métodos de Registro (II)

Monitoreo de Combustión – Poder calorífico neto (NCV) y Factor de Emisión (FE):

- Sustancias líquidas y sólidas: análisis de contenido de C y NCV; cálculo de FE;
- Análisis de la composición del gas y cálculo del contenido de C, NCV y FE;
- Uso de datos y valores estándar específicos del país;
- Métodos de estimación para flujos de sustancia "de-minimis";
- Verificación de plausibilidad.

Cálculo: $CO_2 = AR \times NCV \times EF = AR \times C_{contenido} \times 3,664$

Métodos de Registro (III)

Monitoreo del Proceso de Emisión

• Método de cálculo A: Basado en el insumo del horno de cemento (kiln):

 $CO_2 = AR_i * EF$

- ARi: Tasa de actividad del insumo i *
 - Medida para cada insumo individual del horno o, si está caracterizada, harina cruda (como una mezcla)
 - Alternativa: Determinar en base a la proporción de harina cruda y ratio de clínker, que deberá actualizarse al menos una vez al año
- FE: Factor de Emisión del insumo del horno de cemento
 - Determinar el contenido de carbonato del insumo del horno/ harina cruda según el muestreo y el análisis
 - Calcular las emisiones de CO2 de los carbonatos con ayuda de los factores que proporciona la regulación del monitoreo

Carbonate	Emission factor [t CO ₂ / t Carbonate]							
CaCO ₃	0.440							
$MgCO_3$	0.522							
Na ₂ CO ₃	0.415							
BaCO ₃	0.223							
Li ₂ CO ₃	0.596							
K ₂ CO ₃	0.318							
SrCO ₃	0.298							
NaHCO ₃	0.524							
FeCO ₃	0.380							
General	Emission factor = [M(CO ₂)] / {Y * [M(x)] + Z *[M(CO ₃ ²⁻)]} X = metal M(x) = molecular weight of X in [g/mol] M(CO ₂) = molecular weight of CO ₂ in [g/mol] M(CO ₃ ²⁻) = molecular weight of CO ₃ ²⁻ in [g/mol] Y = stoichiometric number of X Z = stoichiometric number of CO ₃ ²⁻							

^{*} Cuando el polvo del horno de cemento (CKD, por sus siglas en inglés) y el polvo del bypass salen del sistema del horno, el operador no debe considerar la materia prima relacionada como insumo del proceso, sino que debe calcular las emisiones de CKD por separado.

Implementación en la Planta (I)

Datos de actividad: Documentación de las mediciones en un plan de monitoreo (ejemplo)

Dispositivo de Medición	Identifica- ción	Flujo de Combustible / Material	Tarea de Medición	Método, Tipo	Valor de Medición t/h o Nm³/h	Valor Típico Nm³/h	Incertidumbre (%)	Calibración / Ajuste	Última fecha	Intervalo de Verificación
Producción de Clinker	WT2F051	Clinker	Tasa de flujo	Escalas de tasa de flujo	0 – 24	15 - 20	1,5	С	2010	Anual
Combustible (gas)	WT2F014	Gas Natural	Tasa de flujo	Coriolis	0 – 5000	2000 - 4000	1,5	С	2010	Anual
Polvo del bypass	WT2F063	CKD	Tasa de flujo	Escalas de tasa de flujo	0 – 1	0,1 – 0,6	5		2004	Si se require
BPG	WT2F005	Residuos plásticos	Tasa de flujo	Escalas de tasa de flujo	0 – 40	15 - 20	2,5	С	2010	Anual

Módulo D3: Monitoreo, Informe y Verificación para la Producción de Clinker de Cemento

¡Gracias!

Felix Nickel

On behalf of:

On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety